Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 1, 2026
-
Bistable composite laminates exhibit a high degree of shape change and stiffness variation between their stable configurations, making them suitable for applications in morphing structures and energy harvesting. However, integration of these laminates into larger systems often imposes different boundary conditions, which can eliminate one of their stable states. Moreover, clamping one or more edges of a rectangular bistable laminate causes a drastic change in its strain energy landscape, indicating a strong interplay between the laminate geometry, boundary conditions, and prestress. In this work, we investigate the effect of clamping on the bistability of rectangular prestressed laminates. An analytical approach is proposed to examine the deflection decay imposed by the boundary condition along the laminate’s length. Different prestress values, laminate dimensions, and material properties are analyzed to establish their effect on the curvature change due to the localized clamp effect. A length criterion is determined to guarantee bistability after clamping the bistable laminate, suggesting the need to utilize complementary techniques to retain the bistable behavior for orthotropic prestressed laminates. Different strategies to counter the clamped edge effect and thereby retain the bistability of these types of laminates are then examined. The proposed analytical model is expanded to consider multi-section composite laminates, showing the role of the symmetric regions in bistability retention. Finally, the results from the model are validated against experiments.more » « less
-
Abstract In this paper, we present an input-independent energy harvesting mechanism exploiting topological solitary waves. This class of medium transforming solitons, or transition waves, entails energy radiation in the form of trailing phonons in discrete bistable lattices. We observe numerically and experimentally that the most dominant frequencies of these phonons are invariant to the input excitations as long as transition waves are generated. The phonon energy at each unit cell is clustered around a single invariant frequency, enabling input-independent resonant harvesting with conventional energy transduction mechanisms. The presented mechanism fundamentally breaks the link between the unit cell size and the metamaterial’s operating frequencies, offering a broadband solution to energy harvesting that is particularly robust for low-frequency input sources. We further investigate the effect of lattice discreteness on the energy harvesting potential, observing two performance gaps and a topological wave harvesting pass band where the potential for energy conversion increases almost monotonically. The observed frequency-invariant phonons are intrinsic to the discrete bistable lattices, enabling broadband energy harvesting to be an inherent metamaterial property.more » « less
An official website of the United States government
